Ribosomal RNA of the primitive eukaryote Giardia lamblia: large subunit domain I and potential processing signals.

Abstract

The cytoplasmic ribosomal RNA (rRNA) from the intestinal protozoan, Giardia lamblia, is unusually short; the large subunit (LS) and small subunit RNA and the 5.8S RNA are only 70-80% of the length found in typical protozoa, and are even smaller than most of their prokaryotic counterparts. Flanking regulatory DNA and processed rRNA sequences are similarly compact in size. To shed light on the origins and implications of this 'minimal' rRNA, the nucleotide sequence encoding the 5.8S RNA and domain I of LS RNA was determined. Secondary structure analysis revealed that an evolutionarily variable internal hairpin is partially 'deleted' in G. lamblia 5.8S RNA; the 3'-terminal pairing with LS RNA is conserved. Previously characterized eukaryotic 'expansion' regions are extensively shortened within the LS RNA; in one case, a hairpin is precisely 'deleted'. The short sequences flanking the mature 5.8S RNA that are removed by RNA processing (ITS1 and ITS2) are C-rich; our analysis suggests that the sequence GCGCCCC, in a hairpin configuration, may function as the processing signal.

Topics

    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)